您选择的条件: C. T. Chan
  • Trapped boundary modes without a well-defined bulk gap

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: A boundary mode localized on one side of a finite-size lattice can tunnel to the opposite side which results in unwanted couplings. Conventional wisdom tells that the tunneling probability decays exponentially with the size of the system which thus requires many lattices before eventually becoming negligibly small. Here we show that the tunneling probability for some boundary modes can apparently vanish at specific wave vectors. Meanwhile, the number of wave vectors where tunneling probability vanishes equals the number of lattices perpendicular to the boundary. Thus, similar to bound states in the continuum, a boundary mode can be completely trapped within very few lattices whereat the bulk band gap is not even well-defined. Our idea is proven analytically, and experimentally validated in a dielectric photonic crystal. This feature allows for the extreme flexibility in tunning the hopping between localized states or channels, which facilitates unprecedented manipulation of light such as integrating multiple waveguides without crosstalk and photonic non-abelian braiding.

  • Imaging with an ultra-thin reciprocal lens

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Imaging is of great importance in everyday life and various fields of science and technology. Conventional imaging is achieved by bending light rays originating from an object with a lens. Such ray bending requires space-variant structures, inevitably introducing a geometric center to the lens. To overcome the limitations arising from the conventional imaging mechanism, we consider imaging elements that employ a different mechanism, which we call reciprocal lenses. This type of imaging element relies on ray shifting, enabled by momentum-space-variant phase modulations in periodic structures. As such, it has the distinct advantage of not requiring alignment with a geometric center. Moreover, upright real images can be produced directly with a single reciprocal lens as the directions of rays are not changed. We realized an ultra-thin reciprocal lens based on a photonic crystal slab. We characterized the ray shifting behavior of the reciprocal lens and demonstrated imaging. Our work gives an alternative mechanism for imaging, and provides a new way to modulate electromagnetic waves.

  • Symmetry-protected topological exceptional chains in non-Hermitian crystals

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: In non-Hermitian systems, the defective band degeneracies, so-called exceptional points (EPs), can form robust exceptional lines (ELs) in 3D momentum space in the absence of any symmetries. Here, we show that a natural orientation can be assigned to every EL according to the eigenenergy braiding around it, and prove the source-free principle of ELs as a corollary of the generalized Fermion doubling theorem for EPs on an arbitrary closed oriented surface, which indicates that if several ELs flow into a junction, the same number of outflow ELs from the junction must exist. Based on this principle, we discover three different mechanisms that can stabilize the junction of ELs and therefore guarantee the formation of various types of exceptional chains (ECs) under the protection of mirror, mirror-adjoint, or ${C}_2\mathcal{T}$ symmetries. Furthermore, we analyze the thresholdless perturbations to a Hermitian nodal line and map out all possible EC configurations that can be evolved. By strategically designing the structure and materials, we further exhibit that these exotic ECs can be readily observed in non-Hermitian photonic crystals. Our results directly manifest the combined effect of spatial symmetry and topology on the non-Hermitian singularities and pave the way for manipulating the morphology of ELs in non-Hermitian crystalline systems.

  • Topological classification for intersection singularities of exceptional surfaces in pseudo-Hermitian systems

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Exceptional points play a pivotal role in the topology of non-Hermitian systems, and significant advances have been made in classifying exceptional points and exploring the associated phenomena. Exceptional surfaces, which are hypersurfaces of exceptional degeneracies in parameter space, can support hypersurface singularities, such as cusps, intersections and swallowtail catastrophes. Here we topologically classify the intersection singularity of exceptional surfaces for a generic pseudo-Hermitian system with parity-time symmetry. By constructing the quotient space under equivalence relations of eigenstates, we reveal that the topology of such gapless structures can be described by a non-Abelian free group on three generators. Importantly, the classification predicts a new kind of non-Hermitian gapless topological phase and can systematically explain how the exceptional surfaces and their intersections evolve under perturbations with symmetries preserved. Our work opens a new pathway for designing systems with robust topological phases, and provides inspiration for applications such as sensing and lasing which can utilize the special properties inherent in exceptional surfaces and intersections.

  • Experimental realization of chiral Landau levels in two-dimensional Dirac cone systems with inhomogeneous effective mass

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Chiral zeroth Landau levels are topologically protected bulk states that give rise to chiral anomaly. Previous discussions on such chiral Landau levels are based on three-dimensional Weyl degeneracies. Their realizations using two-dimensional Dirac point systems, being more promising for future applications, were never reported before. Here we propose a theoretical and experimental scheme for realizing chiral Landau levels in a photonic system. By introducing an inhomogeneous effective mass through breaking local parity inversion symmetries, the zeroth-order chiral Landau levels with one-way propagation characteristics are experimentally observed. In addition, the robust transport of the chiral zeroth mode against defects in the system is experimentally tested. Our system provides a new pathway for the realization of chiral Landau levels in two-dimensional Dirac systems, and may potentially be applied in device designs utilizing the transport robustness.

  • 运营单位: 中国科学院文献情报中心
  • 制作维护:中国科学院文献情报中心知识系统部
  • 邮箱: eprint@mail.las.ac.cn
  • 地址:北京中关村北四环西路33号
招募志愿者 许可声明 法律声明

京ICP备05002861号-25 | 京公网安备11010802041489号
版权所有© 2016 中国科学院文献情报中心